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Metal surface charge change due to deformation 

E.M. GUTMAN 
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Beer-Sheva 84105, Israel 

Deformation potential for one dislocation and dislocation pile-up in a thin surface layer was 
examined. It is shown that the deformation potential changes the electron work of exit, the 
surface charge of metal and the structure of the double electrochemical layer. The 
differential capacity method was used as the principal method of measuring the metal 
surface charge. The plastic strain increases the positive charge of the metal surface. This 
effect reached a maximum according to successive stages of strain hardening. The 
zero-charge potential of the metal surface was shifted towards negative values by the 
amount of the deformation potential, with the formation of an internal double layer in the 
metal. For example, this shift achieved the value of -0 .16V  in the case of iron in 0.1 N 
H2S04. 

1. Introduction 
For metals, in the case of long-wave elastic fluctu- 
ations of density, proceeding from the condition of 
constant Fermi level over the entire crystal, the magni- 
tude of the electron energy change has been found. It 
characterizes local electrical neutrality violation and 
the appearance of a deformation potential [1] 
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here r is the radius vector of the point where dilatation 
8(r) (volume strain) takes place, eV is the Fermi energy, 
and ~ for numerous metals is of the order 7-8 eV; e is 
the electron charge. 

The electrons flow from compressed regions to ex- 
tended ones, so that the Fermi level (chemical poten- 
tial of the electrons) remains the same. As a result, 
extended regions acquire excess negative charge, while 
compressed ones acquire positive charge. The arising 
potential compensates exactly the Fermi level local 
distortion caused by deformation. In the case of elastic 
uniaxial tension of metals, maximum dilatation 

= (1 - v)ell ~ 0.04% (on average, Poisson coeffi- 
d cient v = 0.3), which corresponds to Aq0m,x = - 2  mV. 

Naturally, such a small value of maximum potential 
change could not have been reliably detected in any 
kind of electrochemical experiments involving metal 
specimen deformation below the macroscopic elasti- 
city limit. The arising of local deformation potentials 
does not define by itself any acceleration of electro- 
chemical metal dissolution. In fact, in relation to the 
change in metal ion work of exit, it should be taken 
into account that the chemical potential of a metal 
consists of the chemical potentials of the ionic skeleton 
and the free electrons. Deformation potential is con- 
nected with the change in the second component. It is 
numerically equal to the energy change of free charge 
carriers - electrons - representing only a small part of 
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the chemical potential of the metal. It is noteworthy 
that the lattice potential represents the main part of 
the chemical potential of the metal (especially for 
transition metals). The energy change of free electrons 
contributes to the chemical potential change of an 
atom only according to the statistical weight of free 
carriers. Therefore, to change the ion work of exit by 
the magnitude revealed by the shift of standard elec- 
trode potential (at the expense of the change in ionic 
exchange) equivalent to the maximum value of defor- 
mation potential, much more energy is consumed than 
is required for the change in the carrier energy by the 
value of the deformation potential. Even under maxi- 
mum residual plastic deformations exceeding the yield 
point, the experimental value of the specimen dilata- 
tion is of the order of AV/V = 8 ~ 10 -4 [2]. This 

d corresponds to Aq~max ~ - - 0 . 5  mV.  

Dilatation connected with anharmonicity may be 
described by the model of non-linear dislocation 
dilatation [3]. This makes it possible to calculate the 
average dilatation, AV/V. The application of this 
model allows the influence of average non-linear ex- 
pansion of homogeneously distributed dislocations on 
the electromagnetic phenomena connected with the 
carrier transfer processes inside the metal, to be fol- 
lowed. Here no detailed model of the deformation 
potential was applied. Instead, a tentative dependence 
of electromagnetic parameters on the non-linear 
dilatation magnitude was accepted, which involved, 
generally speaking, unknown coefficients. The ob- 
served influence of plastic deformation on carrier 
motion in metals can be well explained using the 
notion of deformation potential, if we refer the defor- 
mation potential value on the whole to the change in 
the conduction electrons energy. Deformation poten- 
tial can appreciably influence electrochemical reac- 
tions in the case of a change in the electron work of 
exit. The latter is of essential importance for cathode 
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reactions, because it changes both the overvoltage of 
ion discharge, and adsorption processes on the elec- 
trode surface. 

Thus, to describe mechanoelectrochemical phe- 
nomena under the applied stress, an elastic continuum 
model (with quasi-free electrons) with structural de- 
fects of the dislocation type may be accepted as 
a physical model of a metal. According to this model, 
the deformation potential due to the average dilata- 
tion of an elastically strained metal or to the average 
non-linear dilatation of dislocations does not practic- 
ally influence the metal ion work of exit. Nevertheless, 
it exerts an effect on the electromagnetic transfer phe- 
nomena in metals and on the electron work of exit. As 
noted above, long-wavelength crystal lattice oscilla- 
tions can induce a local electrical neutrality violation. 
It is characterized by a rather small deformation po- 
tential within the limits of linearly elastic macroscopic 
deformations. Average non-linear dilatation of dislo- 
cations (macroscopic average dilatation of a solid 
caused by plastic deformation) results in approxim- 
ately the same low value. 

2. Theory 
Let us consider the role of dislocation pile-ups in the 
formation of a deformational potential. Edge disloca- 
tions cause local dilatation in the region obeying lin- 
ear elasticity laws (r >/2b) [2] 

(1 - 2v) sin 0 
5 = - (2) 

2rc(1 -- v)r 

Hence, the absolute value of local excess hydrostatic 
pressure is 

(1 + v)gb [sin0[ 
P = (3) 

3rc(1 - v)r 

where b is Burger's vector, ~t is modulus elasticity in 
shear, 0 and r are polar coordinates. 

Comparing Equation 2 with the general expression 
for deformation potential (Equation 1), and taking 
into account the additive character of energy para- 
meters during the formation of a planar pile-up in- 
volving n coplanar dislocations [4], we can find the 
final estimate of the local deformation potential 
caused by a planar pile-up involving n dislocations 

a* n(1 - 2v)b sin 0 
Aq~, d (r, d) = (4) 

3roe(1 - v)r 

It follows from Equation 4, in contrast to the 
mechanochemical effect (acceleration of electrochemi- 
cal metal dissolution), that the deformation potential 
depends only on geometrical parameters, i.e. on the 
pile-up sizes, n. It does not depend on strain-harden- 
ing value, which may differ depending on the nature 
and the character of forces resisting dislocation 
motion. However, the dependence of the deformation 
potential on the elastic interaction between disloca- 
tions should cause its sensitivity to the dislocation 
substructure at various deformation stages. It should 
enhance the effect in the case of the formation of 
planar dislocation pile-ups at the stage of intense 
strain hardening, and reduce it in the case of the 
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formation of sub-boundaries and cellular substruc- 
tures at the stage of dynamic recovery. 

The considered dilatation characterizes the crystal 
behaviour within the linear elasticity region. Its value 
averaged over the crystal is zero. However, strictly 
speaking, linear elasticity laws are inapplicable near 
dislocations. Therefore, a non-linear dislocation the- 
ory has been developed [3]. From the point of view of 
this theory, lattice dilatation is non-linear and may be 
described by the following equation 

Aosin0 A~(A1 + A2cos20) 
8 = (1 -- 2v) gr + r 2 + 

(5) 

where A0--- - ~ / 2 r f f l -  v), Aa and A2 are magni- 
tudes expressed in terms of linear and non-linear elas- 
tic constants. 

Let us determine the average value of non-linear 
dilatation (Equation 5) over the entire crystal volume. 
It is essentially non-zero and may be obtained by 
integrating Equation 5 over the region of the dimen- 
sion, r 

2A~A1 In (r/rd) 
8 = r2 _ ra z , (6) 

where ra is the dislocation core radius. We calculate 
the non-linear dilatation for each unit cell b 2 located 
in a point with the coordinate r. From Equation 6 we 
obtain 

1 d A~A1 
3b(1") -- 2nr dr [~n ( r  2 - -  rd 2)] - r 2  (7) 

In contrast to the average non-linear dilatation, ~, this 
magnitude is a local characteristic depending on the 
coordinate r (the averaging is carried out only over the 
azimuth angle, 0). Therefore, it reaches high values 
near dislocations. Substituting Equation 7 into Equa- 
tion 1, we find the respective local deformation poten- 
tial 

2@AoA1 
A(pd(r) = - 3er2 (8) 

which, in contrast to Aq)~(r, 0) obtained from Equa- 
tion 4, does not vanish when averaging over the crys- 
tal. It manifests itself independently of the azimuth 
angle of the reference point location regarding the 
dislocation axis at a specified distance from the latter. 
The local deformation potential due to the action of 
one planar pile-up of n dislocations may be finally 
expressed in the following form 

Aq~,a(r) = 6eu2r2(1 _ v) z (9) 

The new surface forming during the process of edge 
dislocation exit creates a surface barrier, and edge 
dislocation pile-ups of considerable sizes may appear 
near the generated surface. In the present case, we 
consider a surface barrier connected with the resist- 
ance to the dislocations exit, which is caused by work 
consumption on forming a new surface on the slip 
step. Taking the width of the surface barrier with the 
pile-up of n dislocations before it, to be equal to the 
maximum dislocation width, we obtain r ~ 10b for 



Equation 9. Substituting into Equation 9 typical nu- 
merical values (for our approximate estimations, we 
accept the orders of magnitude of non-linear elastic 
constants obtained for copper) ~* = 7 eV, v = 0.3, 
r = 10~, ra = 2b, p = 83 GPa, At ~ 10 -21 m4/N 2, we 
can estimate the deformation potential for the points of 
a thin layer near the surface: Aq~,a(r, 0) ~ -0.0165n V. 
For example, for the magnitude n = 10, it leads to 
Aq0, a ~ - 0.16 V. 

The absolute value of the deformation potential is 
numerically equal to the deformational distortion of 
the Fermi level (before its flattening). Finally, it char- 
acterizes the change in the conduction electrons en- 
ergy, which may affect the work of exit of an electron. 
Frumkin [5] has formulated the following statement: 
the zero-charge potential of a metal, q~N, is propor- 
tional to the Volta-potential value. Numerous invest- 
igations confirmed the dependence 

c0; 
q 0 N -  f 4.7 (10) 

where co~, is the work of exit of an electron. 
Therefore, one should assume the influence of defor- 

mation on the zero-charge potential, q0N, (or the zero- 
point potential). The mechanism of this phenomenon 
can be presented as follows. Frenkel [6] proved the 
existence of a double surface electric layer in metals 
formed by a cloud of free (non-localized) electrons 
above the metal surface and positive ion-atoms of the 
crystalline lattice skeleton (surface cations). We term 
this layer the Frenkel double layer. The Frenkel 
double layer is always characterized by the existence 
of a potential jump, including the case of the absence 
of a charge excess on the metal surface, i.e. in the zero- 
point of the metal (just as the potential jump which is 
connected with the orientation of the solvent dipoles). 

Deformational local lattice dilatation near the 
metal surface leads to electrons being drawn-off from 
the  adjacent regions, including the double Frenkel 
layer, due to the Fermi level flattening. The arisal of 
a local deformation potential of the extended region is 
accompanied by the opposite change of the potential 
of the regions that have accomplished the function of 
electron donors. Non-localized electrons of the double 
Frenkel layer are the least tightly bound with ion- 
atoms of the crystalline lattice skeleton (concerning 
electrons of the internal regions). They are the first to 
be drawn into the extended regions of the crystal, 
baring the surface monolayer of positively charged 
ion-atoms of the lattice skeleton. Such a redistribution 
of electrons results in the formation of a double electri- 
cal layer, consisting of a negatively charged plate (ex- 
tended under-surface crystal regions) and a positively 
charged plate (mono-layer of drawn-out positive sur- 
face ion-atoms). For brevity we call such a deforma- 
tion-induced double layer an internal double layer of 
the metal. At the same time, the structure of the 
Frenkel double layer is changed due to a partial 
passage of external electrons into the metal. Therefore, 
the potential jump hindering the exit of electrons from 
the metal is reduced, and, hence, the work of exit of 
electrons also decreases (the chemical potential level of 
the electrons inside the metal remains unchanged). 

The positive plate of the internal double layer in- 
creases the positive charge of the metal surface and 
affects the structure of the double electrochemical 
layer, orienting solvent dipoles and changing the elec- 
trostatic adsorption of electrolyte cations and anions. 
According to Equation 10, the reduction of the elec- 
tron work of exit results in an equivalent shift of the 
zero point towards negative potentials. This corres- 
ponds to an increase in the positive charge of the metal 
surface. 

Let us calculate the magnitude of the deformational 
shift of the zero point. If we imagine that a large piece 
of metal was subjected to a uniform dilatation, then 
the deformational distortion of the Fermi level, AaF/e, 
inside it leads to a nearly equal (numerically) change in 
the potential jump in the Frenkel double layer, be- 
cause the Fermi level is flattened over the entire crystal 
only due to the passage of the electrons of the external 
plate of the Frenkel double layer into the crystal, and 
their amount is insufficient for ~v to acquire the initial 
value. In the present case, we obtain 

E ~ lAx01 (l la) 

Ao~; 
- 0 ( l lb)  

e 

because the potential jump, ~o, in the Frenkel double 
layer (surface potential of the metal in a vacuum) 
and the level of the chemical potential of electrons, 
undergo opposite changes, so that the work of exit 
remains unchanged. Thus, according to Equation 10, 
the zero charge potential of the metal surface will 
remain unchanged although, due to the increase in 
the surface potential jump, the Galvani-potential of 
the metal, gm = ~0 -~- ~/ ,  grows (4 being the external 
potential forming the basis of Volta-potential forma- 
tion). 

If a piece of metal undergoes a heterogeneous 
dilatation only in the sites of dislocation pile-up, then 
we may assume, to a sufficient precision, that inside 
the region of the under-surface pile-up influence, 
a thin layer of the expanded lattice adjacent to the 
surface, accepts electrons from the Frenkel double 
layer, creating an excess positive charge on the surface. 
It seems quite logical to estimate the order of mag- 
nitude of the thickness of this thin surface layer inter- 
acting with external electrons, as half the distance 
between the surface atoms plane and the next underly- 
ing atomic plane, because for such scales, lattice 
dilatation at the distances ofr  ~ 10~ from the disloca- 
tion core may be assumed to be homogeneous. The 
lower boundary of the layer chosen in such a way may 
be taken as a neutral cross-section, dilatation occur- 
ring on both sides of it. Below this cross-section, 
electron deficiency is filled at the expense of the entire 
volume of the metal, and above it, at the expense of 
external electrons. 

The Fermi level is, in essence, the electrochemical 
potential of electrons in metals. Enjoying a certain 
freedom in the choice of a standard state and in the 
separation of chemical potential into a chemical and 
an electrical part, which cannot be accomplished using 
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thermodynamic methods, but is quite reasonable from 
the point of view of atomistic ideas, we can write the 
expression for the electrochemical potential of elec- 
trons in a metal as follows 

~v = ~te = g~ + eZo + e~) (12) 

where ge is the chemical potential of electrons in 
metals depending, in particular, on their concentra- 
tion, and ~t is the external potential. 

The electron work of exit equals a~*m = 
- ( g e + e X o ) ,  and according to the free electron 

model, at the Fermi level we obtain 

~'e = ge(0)  + He (13) 

where ge (0) is the chemical potential of an electron at 
the lowest occupied level, and Ho is the total width of 
the energy spectrum of a filled band. 

The deformation of the highest occupied level, AHe, 
immediately brings about such a deformation of the 
lowest level, - Age(0), equal in absolute value, so that 
the level ge is constant. The compensation occurs at 
the expense of the electron density redistribution, and 
the addition to the carrier energy, Ape(0)/e, represents 
the arising deformation potential (Equation 1). 

Under the considered conditions, the distribution of 
local deformation potential is asymmetric, although 
its average integral over the volume equals zero ac- 
cording to charge conservation law. Within a limited 
region of the extended lattice near the dislocation 
pile-ups, its magnitude is of the order of Equation 9, 
while in the remaining region of non-deformed crystal, 
due to its much larger sizes, the exit of compensating 
electrons exerts only a slight influence on the electron 
density and causes a negligibly small potential change. 

One can always choose a thin surface metal layer in 
order to assume that electron deficiency in this layer is 
completely covered at the expense of the external 
electron cloud of the Frenkel double layer with a re- 
spective change in the external potential, 4. (The 
thickness of this layer has been estimated above.) 
Because in this case, too, lattice dilatation or compres- 
sion changes the chemical potential Age (at the outset 
of the deformation, electrical neutrality is not violated, 
and only the chemical part of the energy changes), the 
equilibrium condition, Ag, = 0, may be provided by 
electron redistribution at the expense of the electrons 
of the Frenkel double layer. This will cause a change in 
the surface potential jump, Zo- The magnitude of the 
latter is defined by compensation conditions: 
AZo = -- A~te(0)/e = Aq~a(r), where Aq0a(r) is the defor- 
mation potential in a thin surface layer. 

Now the general condition of constant electro- 
chemical potential (As F = 0) requires an equivalent 
change in the external potential Aqt = - A z 0  = 
- Aq~a(r). Subsequently, the work of exit is changed: 

Ac0~/e = AZo. Consequently, the zero-charge poten- 
tial shift takes place, Aq~N = Ac0~./e = A(pa(r), as was 
to be established. Because the changes in surface and 
external potentials compensate each other, the local 
Galvani-potential remains unchanged, and the metal 
remains equipotential (Axo = -  A~t). According to 
Equation 9, Aq0a(r)< 0. Then Aq~i < 0, too which 
points to the arisal of additional local positive charge 
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on the deformed metal surface interacting with the 
electrolyte. 

Thus, it can be supposed that the dependence of the 
change in the electron work of exit on the plastic 
deformation degree should be analogous to the 
change in the metal mechanochemical activity at vari- 
ous deformation stages [7]. At the strain-hardening 
stage, the effect should be enhanced due to the interac- 
tion of dislocations in planar pile-ups, while at the 
dynamic recovery stage, it should weaken. Local in- 
crease in the surface charge leading to rearrangement 
of the adjacent double electrochemical layer may be 
experimentally detected, if it leads to an increase in the 
capacitance of this layer, which may be presented as 
a system of local capacitors connected in parallel. In 
particular, for low-carbon steel (n ~ 10), the shift of 
the minimum of differential capacity curves (towards 
negative potential values) should equal Aq~N = 
Aq~, a ~ --0.16 V. This is comparable with the meas- 
ured value, as will be shown below. 

3. Experimental procedure 
We have investigated electrode impedance (differential 
capacity and resistance) of the surface of a low-carbon 
steel specimen under uniaxial tensile loading in 0.1 y 
HzSO4 electrolyte. The chosen electrolyte made it 
possible to investigate mechanochemical effects in the 
absence of an oxide film. It was established by scrap- 
ing the electrode surface under the electrolyte and 
measuring differential capacity. A glass electrochemi- 
cal cell (Fig. 1) was fabricated taking into account 
improved requirements to sealing glands made of 
polytetrafluoroethylene because of a broad interval of 
the specimen deformation values. A wire specimen of 

10 

3 

6 

5 

8 

Figurel Schematic view of the electrochemical cell for metals under 
stress. 1, specimen (working electrode); 2, hermetizing plug; 3, mov- 
able vessel lid; 4, gap for hermetizing fluid; 5, solution filling funnel; 
6, hermetizing ground-in plug; 7, gas forwarding tube; 8, tap for 
solution disposal; 9, intermediate ground-in plug of reference elec- 
trode; 10, clamps of tensile test machine; Pt, platinum counter 
electrode. The cell has double walls for thermostatic temperature 
stabilization (not shown). 



low-carbon steel (0.1% C, 0.5% Mn, 0.03% Si, 0.15% 
Cr, 0.3% Ni, 0.04% S and P) 0.8 mm in diameter, was 
vacuum annealed at 1203 K, degreased and coated 
with acid-proof varnish. A cylindrical operating por- 
tion of a specified length (2 or 10 mm) was left un- 
coated. To ensure electrical insulation, the clamps of 
the tensile test machine operating in uniaxial tension 
were made of fabric-based laminate composite. Step- 
wise strain was accomplished using a screw and meas- 
ured by a special indicator to an accuracy of 0.01 mm. 
The distance between the clamps and the total speci- 
men length (approximately 100 mm) made it possible 
to locate the electrochemical cell with specimen, elec- 
trodes and auxiliary vessels in a specific manner. The 
operating portion of the specimen (on the cell axis) 
was located opposite the capillary of 2N mercury- 
mercurous sulphate reference electrode within the 
limits of coaxial auxiliary electrode made of platinum 
net. The double layer impedance was measured with 
an electronic bridge at the operating frequency of 
10 kHz. Special investigations have shown that the 
frequency-response dependence of differential capa- 
city practically disappears at this frequency. Hence, 
the results are not distorted by the presence of micro- 
cracks on the surface formed due to microroughness 
increase under plastic deformation. A.c. voltage at the 
cell did not exceed 10 mV, ensuring a satisfactory 
precision of differential capacity measurement. To 
realize polarization by direct current, an auxiliary 
platinum electrode was used, separated by a tap from 
the cell (not shown in Fig. 1). When measuring differ- 
ential capacity curves, polarization was carried out 
using a galvanostat with specially chosen control 
stages. A high value of the galvanostat ballast resist- 
ance (up to 50 Mf~) ruled out its influence on a.c. 
circuit operation. Special measurements were carried 
out to account for the change in the operating portion 
area of the specimen. The results of capacitance and 
resistance measurements were recalculated on their 
basis, using correction factors. 

4. R e s u l t s  a n d  d i s c u s s i o n  
Fig. 2 shows the results of the measurement. Deforma- 
tion slightly changes the steady potentials, while the 
zero-charge potential is shifted towards negative 
values, the surface becoming positively charged. 
According to theoretical analysis, the shift of surface 
charge towards positive values passes through a max- 
imum with growing deformation. It increases at the 
stage of strain hardening and then decreases some- 
what, as in the case of the mechanochemical effect [7]. 
Similar results were also obtained in HC1 solution. 
Measuring the surface charge change by the shift of 
zero-charge potential, q~N, it may be concluded that 
the deformation of a practically uncharged surface (in 
non-strained state qDN is close to %) leads to the 
appearance of a positive charge. This is characterized 
by Aq0N shift of the order of 0.1-0.16 V (a change 
towards negative potential), which agrees with the 
calculated value obtained above. 

To clarify the nature of differential capacity increase 
in the process of deformation, we compare the curves 
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Figure 2 Dependence of differential capacity on potential for unde- 
formed and deformed specimens. (--~) Steady potential, (--~) 
zero-charge potential. NHE, normal hydrogen electrode. AI(�9 0, 
(11) 5 mm, (0) 15 mm. 

presented in Fig. 2. The anodic polarization of a non- 
deformed specimen, equal to the zero-charge potential 
shift caused by deformation (A/= 5 ram), leads to 
a capacitance increase approximately equal to that 
observed at the deformation under steady potential 
conditions. The comparison of the curves for Al = 0 
and Al = 15 mm shows that a (PN shift of 100 mV, 
caused by deformation, led to an increase in 
capacitance by 20 ~tF cm - 2 at a steady potential. This 
coincides with a capacitance increase in undeformed 
specimens at the anodic polarization by 100 mV for 
a steady potential. In general, all the experiments 
revealed a trend of increasing capacitance by a magni- 
tude of the same order as in the case of anodic polar- 
ization, equivalent to an increase in the positive 
charge of the deformed metal surface. This points 
directly to the predominant role of physical (electro- 
static) adsorption of SO 2- and HSO2 anions, which 
depends on the surface charge and increases with the 
metal positive charge growth due to its deformation. 

Chemisorption of these ions (at the expense of ~- 
bond interaction with partially filled acceptor d-levels 
of iron), apparently does not play a decisive role owing 
to its low significance here. Nevertheless, we could 
have expected a certain decrease in the positive charge 
resulting from anion chemisorption. The differential 
capacity increase at the zero-charge potential and the 
sharp drop of the curves given in Fig. 2 with increasing 
strain (as also occurring with increasing acid concen- 
tration) may be caused by intensification of the anodic 
processes. The latter leads to the enrichment of the 
electrode layer with sulphate and hydrosulphate 
anions, the potential of the minimum differential capa- 
city remaining unchanged. 

5. C o n c l u s i o n  
The deformational shift of zero-charge potential shown 
above is of essential importance in the adsorption 
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ability and electrochemical behaviour of a deformed 
metal. The internal double layer formation and the 
change of the electron work of exit can also signifi- 
cantly influence the contact potential difference for 
deformed metals. Monitoring the arisal of additional 
positive charge on the deformed metal surface interac- 
ting with an electrolyte is convenient if the differential 
capacity method is used. 
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